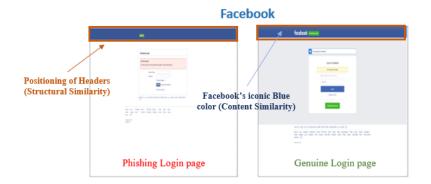
Triplet Mining-Based Phishing Webpage Detection


Kalana Abeywardena, Jiawei Zhao, Lexi Brent, Suranga Seneviratne, and Ralph Holz

Motivation

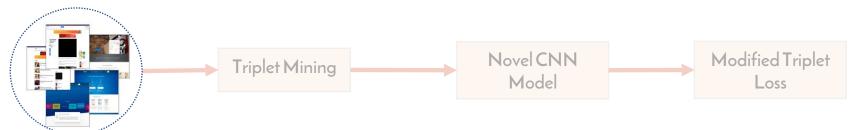
Motivation

Phishing Webpage Detection


Different Methods currently in use:

- Blacklisting or Whitelisting
- Texual-feature based ML techniques
- Visual Similarity between webpages

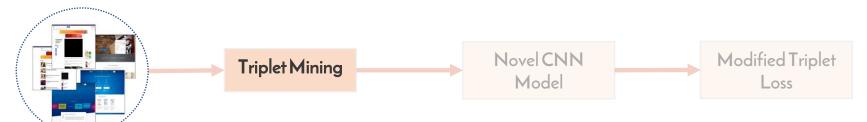
Phishing Webpage Detection


Different Methods currently in use:

- Blacklisting or Whitelisting
- Texual-feature based ML techniques
- Visual Similarity between webpages

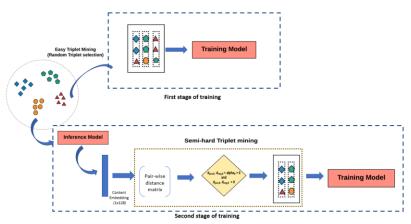
- Novel CNN Architecture
- Content Similarity Content Embedding
- Structural Similarity Structural Embedding
- Triplet Learning WITHOUT Phishing webpages

Legitimate Webpages

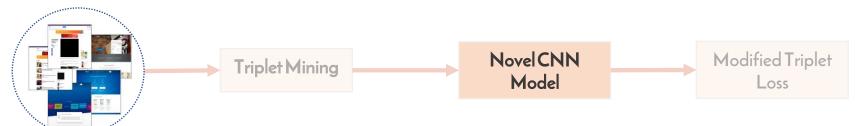


01

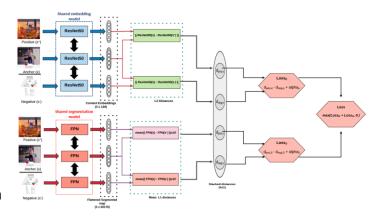
Data Collection and Preparation


- Scraping Headless chrome pages and saving (1920, 1080, 3) screenshots
- 49063 webpages of 9557 domains including 3619 logging pages
- Split to Train and Validation

Legitimate Webpages


Triplet Mining

- Two available Triplet Mining Strategies used.
- Phase 01 Easy/Random Triplet Mining
- Phase 02 Semi-Hard Triplet Mining


02

Legitimate Webpages

Novel CNN Model

- Fusion between two Triplet Networks.
- Triplet Network for Content Similarity Detection
- Triplet Network for Structural Similarity Detection

03

Legitimate Webpages

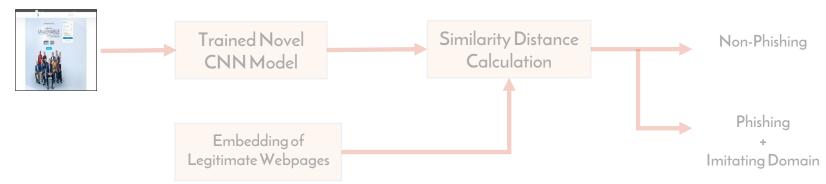
04

Modified Triplet Loss

 Uses a modified Triplet Loss based on Triplet losses from two Triplet Networks fused to optimize the weights.

$$loss = \sum_{i} max(loss_{c}^{(i)} + loss_{s}^{(i)}, 0)$$

where


$$loss_c^{(i)} = d_{pos,c}^{(i)} + \alpha_c - d_{neg,c}^{(i)}$$

and

$$loss_s^{(i)} = d_{pos,s}^{(i)} + \alpha_s - d_{neg,s}^{(i)}$$

Phishing Webpage Detection Pipeline

Phishing Webpage (Query Image)

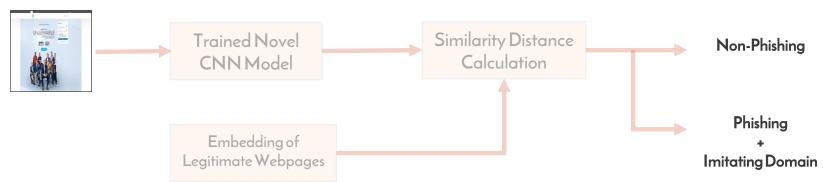


01

Data Collection and Preparation

- Scraping Headless chrome pages of Phishing Webpages on Phishtank (2019-02-01)
- 113 phishing webpages imitating 22 legitimate sites

Phishing Webpage Detection Pipeline



Similarity Calculation

 Distance calculation between embeddings of query image (from Trained CNN model) and pre-computed embeddings of legitimate webpages

Phishing Webpage Detection Pipeline

Phishing Webpage (Query Image)

03

Detection

- Based on a pre-calculated threshold value, detects a Query Image as Phishing or Non-Phishing
- If Phishing is detected, returns Top-1 legitimate domain

Experiments and Results

Different Baseline Image Matching methods compared:

- Raw pixel-wise distance
- Hashing methods
- Image embeddings related methods

	k	Pixel	Avg.	Diff.	Perc.	Wavelet	SIFT	SURF	Segment.FPN		ResNet	TripletNet	Our
		L2	hash	hash	hash	hash							method
Precision	1	0.3056	0.4500	0.6341	0.4000	0.3056	0.3478	0.4419	0.1220	0.5349	0.5000	0.7111	0.7955
	6	0.1698	0.3121	0.6610	0.1560	0.1185	0.1813	0.1552	0.0830	0.2806	0.3153	0.6720	0.6477
Recall	1	0.1667	0.2727	0.3939	0.1667	0.2424	0.2424	0.2879	0.0758	0.3485	0.2879	0.4848	0.5303
	6	0.0758	0.1247	0.1801	0.0577	0.0508	0.0808	0.0624	0.0439	0.1270	0.0152	0.1940	0.3756

Our method gives the best Top-1 Precision out of all the image matching methods

Competitive Top-1 Precision with White Net that has phishing webpages in training pipeline

Conclusion and Future Work

- A visual similarity-based Phishing Detection method that does not require Phishing samples at the training time.
- Surpasses the baseline image-matching methods on detection of phishing with the highest Precision and Recall for Top-1.
- Provides competitive performance to other Triplet Learning based methods (i.e. WhiteNet) that USES phishing samples at the training time.
- Future work includes:
 - 1. Testing for a larger Phishing webpage dataset
 - 2. Using lighter and faster shared models for detection
 - 3. Improvements for structural embedding creation

Thank You