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Motivation – Vulnerabilities of End-to-End Encryption

Side channel information leaks
(packet size, packet timing etc.)

• Websites visited
• Videos streamed
• Messenger app activities
• …



Motivation – Traffic Fingerprinting Attacks

• Most recent traffic fingerprinting attacks leverage deep learning models 

• E.g. MLPs, CNNs, RNNs
• CNNs outperform other deep learning models (in almost all the studies) 

• Applications of traffic fingerprinting:

• Network measurements / performance analysis
• Network surveillance
• Network censorship

• Understanding the inner workings of traffic fingerprinting attacks is essential to:

• Improve the attacks / better network intelligence
• Develop protocols resilient to traffic fingerprinting



Our Contributions
• We methodically dissect network traffic fingerprinting 

CNNs to understand their inner workings.

• We use three existing datasets to:

• Characterize patterns that traffic fingerprinting CNNs look for at 
different depths of the network.

• Provide insights on parts of the input traces that contribute 
significantly towards the classifier’s decision.

• Show traffic fingerprinting CNNs demonstrate transfer learning 
capabilities.

• Show why CNNs outperform RNNs at traffic fingerprinting Nguyen et al. 2016, Arxiv1

Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks."
arXiv preprint arXiv:1602.03616 (2016).



Datasets

Dataset Source Traffic 
category

No. of 
classes

Traces 
per 

class

Training 
set size

Test set 
size

Validation 
set size

AWF Rimmer et al.
[NDSS ‘18]

Website 
visits

200 2,500 350,000 75,000 75,000

DF Sirinam et al.
[CCS ‘18]

Website 
visits

95 1,000 76,000 9,500 9,500

DC Li et al.
[NCA ‘18]

Video 
streaming

10 320 2,510 640 50

• Three publicly available datasets: 



Datasets – Example Data Points

• AWF and DF Datasets
• +1s in the initial part (HTTP GET requests sent to the web server)
• Middle and later parts are mostly -1s (downloading website content)

• DC Dataset
• Sequence of integers between 0 and 736 
• Periodic patterns that correspond to DASH chunk fetching. 

AWF DF DC



CNN Architectures

DC 
architecture

AWF/DF 
architecture



Key Idea - Visualizing 1-D Convolution Filters

• 1-D Convolution:
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Where !1, !2, !3, … , !' is input sequence, )1, )2, )3, … , )' is the filter and 2 is bias term

• 1-D convolution is analogous to cross correlation

• Convolution between an input and a filter can be seen as finding sections of the 
input that match the pattern of the filter 



Visualizing 1-D Convolution Filters
AWF/DF Model: 
• Input is +1 or -1 only

• Output value takes maximum possible value if the signs 
(positive or negative) of the input is same as that of the 
weights in the filter for all positions.

• Output will take the least possible value (largest negative) 
when the signs of the values of the input and the filter are 
exact opposites. 

This intuition can help identify patterns learnt by filters of 
1st layer only.

(a) AWF/DF Model (b) DC Model
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Visualizing DC model filters with Gradient Ascent
Gradient Ascent: Optimizes noisy input to maximize mean activation for filter considered 

(a) (b) (c)
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• Receptive field: Section of original 
input that affects given position of 
output

• Receptive fields are highlighted in 
orange. 

• Repetitive  high activations suggest 
that video fingerprinting CNNs 
respond to bursts in their inputs with 
specific shapes and lengths. 



Visualizing AWF and DF Model Filters  
• Gradient Ascent method does not work for AWF and DF methods as each step 

would flip the sign of the input value without converging. 

• Use the input trace with the highest filter activation value from the training set to 
approximate the features. 

AWF layer 1 AWF layer 2

• All filters look for specific patterns with combinations of +1s and -1s in the input. 



RQ 1: What patterns do traffic fingerprinting CNNs learn? 

• Visualize the filter weight distribution of all filters for selected convolutional layers 

• Filters look for sequences with a combination of +1s and -1s (uploads and downloads).

• Do not look for continuous sequences of +1s and -1s.

• Counterintuitive – many existing defence mechanisms add noise when there is no activity.

AWF layer 1 AWF layer 2



RQ 1: What patterns do traffic fingerprinting CNNs learn? 

• Visualize the filter weight distribution of all filters for selected convolutional layers 

• Filters look for sequences of different number of packets per unit time 

• Filters focus not only on the envelope of the burst signal, but also on the finer sub-
bursts associated with a major burst. 

DC layer 1 DC layer 2



RQ 2: Is there any part of the trace CNNs focus more on? 

• Visualize activation maps for each layer from 500 random samples

• For website visits, highest filter activations correspond to the beginning of trace.

• More defensive noise must be added at the beginning 

AWF model DF model



RQ 2: Is there any part of the trace CNNs focus more on? 

Visualize activation maps for each layer from 500 random samples

• For video streaming, high variations visible throughout the trace.

DC model



RQ 3: Would the initial trace portion alone be sufficient? 

• Analyze accuracy of model on masked inputs.

• Given an original test set sample with length 10 where classifier input length is 
12, process of masking is as follows.

1 -1 -1 1 -1 1 -1 1 -1 -1 Original sample0 0

1 -1 -1 1 -1 1 0 0 0 0 0 0

50% masked

50% masked sample



RQ 3: Would the initial trace portion alone be sufficient? 

• Analyze accuracy of model on masked inputs

• AWF and DF models record >80% accuracy 
even at 50% masking.

• Website fingerprinting models focus more on 
initial parts à strong resilience to masking.

• DC model accuracy degrades after 25% 
masking.

• Video fingerprinting models focus on periodic 
patterns à highly susceptible to masking.



RQ 4: Can we do transfer learning?

AWF model DC model

• Transfer learned model reaches the accuracy plateau with lesser number of samples

• Less training data for fine-tuning for new classes

• Similar results were observed for DC dataset as well

• May be you need 1-2 points here, how you did that?



RQ 5: Why CNNs outperform RNNs? 

CNN vs RNN: Resilience to concept drift (AWF)

LSTM 
model

Number of days between test set and train set capture

3 10 14 28 42

CNN 99.80% 97.90% 94.00% 89.00% 87.40%

LSTM_150 92.87% 88.91% 84.01% 77.25% 76.20%

LSTM_1500 93.50% 90.10% 84.80% 76.30% 73.20%

CNN vs RNN: Test set accuracy gap

Dataset Performance gap between 
CNN and LSTM

AWF 3.35%

DF 2%

DC 13%

• Many work show that CNNs outperform RNNs in traffic fingerprinting

• List some here X et al. 
• Y et al. 

• CNNs were also shown high resilience to concept-drift.



• Evaluate the classifier performance when test set samples are shifted in 
multiple ways.

• Example: Given an original test set sample with length 8 where classifier 
input length is 10 the process of shifting right is as follows.

1 -1 -1 1 -1 1 -1 -1 0 0 Original sample

00 0 1 -1 -1 1 -1 1 -1 Shift right by 3 from beginning

1 -1 -1 0 0 0 1 -1 1 -1 Shift right by 3 from random position

1 -1 -1 1 -1 1 -1 -1 0 0 Original sample

RQ 5: Why CNNs outperform RNNs? 



Shifted right from start Shifted right from random

Shifted left from end Shifted left from random

• CNNs are more resilient to 
shifts in burst patterns than 
RNNs

• Network traces contain noise 
due to delays and CNNs which 
can work better with such data 
perform better.

RQ 5: Why CNNs outperform RNNs? 



Takeaway Messages
• Website fingerprinting CNNs,

• Give more weight to the initial part of a traffic trace which contains a high concentration of 
transitions

• Can make a reasonable prediction with just the initial part of a traffic trace itself

• Video fingerprinting CNNs focus on periodic sections of uploads and downloads 
that correspond to periodic bursts in video streaming.

• These insights help to,
• Design better classifiers

• Design efficient defenses 
• More adaptive noise must be added into the parts where there are more activities



Takeaway Messages

• Traffic fingerprinting CNNs show the same transfer learning capabilities as image 
classifying CNNs.
• This helps scaling up traffic fingerprinting CNNs with respect to the number of classes can be 

done with much less training data and time.

• Resilience of CNNs to random variations in traffic flows and bursts that occur due 
to varying network conditions is the main contributing factor for their success 
compared to RNNs.
• Training process of traffic fingerprinting RNNs could be improved by augmenting data

• Combination of CNN and LSTM could perform well with traffic fingerprinting


