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Abstract—Traffic fingerprinting and developing defenses
against it has always been an arms race between the attackers
and the defenders. The rapid evolution of deep learning methods
makes developing stronger traffic fingerprinting models much
easier, while overhead, latency, and deployment constraints
restrict the abilities of the defenses. As such, there is always
the need of coming up with novel defenses against traffic
fingerprinting. In this paper, we propose SMAUG, a novel CGAN-
based (Conditional Generative Adversarial Network) defense to
protect video streaming traffic against fingerprinting. We first
assess the performance of various GANs in video streaming
traffic synthesis using multiple GAN quality metrics and show
that CGAN outperforms other types of GANs such as basic
GANs and WGANs (Wasserstein GAN). Our proposed defense,
SMAUG, uses CGANs to synthesize video traffic flows and use
those synthesized flows to camouflage the original traffic that
needs protection. We compare SMAUG with other state-of-the-art
defenses - FPA and d*-private methods, as well as a kernel density
estimation-based baseline and show that SMAUG provides better
privacy with lower overhead and delay.

I. INTRODUCTION

Around 90% of the global web traffic is currently end-to-end
encrypted using HTTPS as opposed to the 50% in 2017 [1],
implying a rapid growth. There has also been increased user
interest in utilizing end-to-end encrypted communications not
only for web browsing but also for other related services that
were known to leak information such as DNS [2]. Nonetheless,
various internet protocols are known to leak information
through side-channels, despite being end-to-end encrypted. In
fact, multiple papers demonstrated the possibility of using
packet sizes, packet direction, and inter-packet times to infer
the underlying content of encrypted communications such
as websites visited [3], videos being watched [4], specific
messenger app activities [5], and even detecting specific words
in encrypted VoIP traffic [6].

To mitigate the effects of side-channel attacks, various
papers proposed defenses that attempt to obfuscate distin-
guishable statistical patterns of original content appearing in
encrypted traffic by adding dummy data and/or packet delays
to the original content before encryption, at the cost of data and
timing overhead. For example, defenses such as BuFLO [7],
Walkie-Talkie [8], and FPA method [9] add both dummy data
and packet delays while defenses such as WTF-PAD [10] and
FRONT [11] add only dummy data. Nonetheless, side-channel
attacks and defenses has always been an arms race between

the attackers and defenders, where a more powerful traffic
fingerprinting method always beats the state-of-the-art defense.
With the advances in deep learning, we observe more and more
fingerprinting methods being proposed [3], [12]. As such, it
is required to assess and revisit existing defenses and propose
new ones to circumvent the threats of traffic fingerprinting.

To this end, we propose SMAUG - Streaming Media
Augmentation Using CGANs, a novel defense mechanism
to defend video streaming traffic against traffic fingerprint-
ing, using Generative Adversarial Networks (GANs) [13].
While GANs have been used extensively in computer vision
tasks [14], their applications in network traffic have been
explored only in limited settings [15], [16]. We leverage a
Conditional Generative Adversarial Network (CGAN) [17] to
generate synthetic video streaming traffic flows and use them
to morph original traffic into different patterns so that an
attacker cannot build a traffic classifier. To the best of our
knowledge, our paper is the first to use CGANs as a defense
mechanism against traffic fingerprinting. More specifically, we
make the following contributions.

• We investigate the use of different GANs in network
traffic synthesis and show that Conditional GANs produce
more realistic results and outperform other GAN types
according to several GAN quality measurement metrics.

• We propose SMAUG, a novel CGAN-based traffic mor-
phing method that allows protecting video streaming
from traffic fingerprinting attacks. We evaluate SMAUG’s
effectiveness in protecting video traffic using two real-
world datasets. Our results show that using CGAN syn-
thesized traces in the morphing process drops the attacker
accuracy by approximately 4%–8%.

• We compare SMAUG with a Kernel Density Estimation
(KDE)-based baseline and two state-of-the-art methods,
FPA and d*-privacy, and show that SMAUG provides a
better balance between privacy, overhead, and delay.

The rest of the paper is organized as follows. In Section II,
we present related work and in Section III we present the
background information, datasets, and the overall design of
our solution. We compare the performance of various GANs
in traffic synthesis in Section IV. Our proposed defense and its
performance results are presented in Section V. In Section VI
we discuss implications, limitations, and possible future ex-
tensions of our work. Section VII concludes the paper.978-1-6654-9550-9/21/$31.00 ©2021 IEEE



II. RELATED WORK

We first present prior work on traffic fingerprinting attacks
and then discuss key defenses proposed against such attacks
highlighting those on video streaming. Finally we present work
that used GANs in the context of network traffic classification.

A. Traffic fingerprinting attacks

As discussed earlier, statistical properties of encrypted flows
can be used to conduct traffic fingerprinting attacks undermin-
ing the privacy expectations of end-to-end encryption.

i) Website fingerprinting and inferring user activities: Ini-
tial papers on website fingerprinting used traditional machine
learning techniques such as Naı̈ve-Bayes [18] and SVMs [19].
Recent papers [3], [12] adopted deep learning methods for
website fingerprinting with results over 90% accuracy in
identifying the websites users are visiting. Apart from website
fingerprinting, attacks have also been demonstrated for mes-
senger apps [5], smart assistants [20], and VoIP traffic [21].

ii) Video streaming fingerprinting: Schuster et al. [4] used
a CNN to fingerprint video streaming traffic from YouTube,
Amazon, Vimeo, and Netflix and achieved ∼95% accuracy.
Li et al. [22] showed the same possibility, yet over encrypted
WiFi traffic using a Multi Layer Perceptron (MLP) model.
Reed and Kranch [23] identified Netflix videos with over
99.99% accuracy only using the TCP/IP header information.

B. Defenses against traffic fingerprinting attacks

Several papers focused on developing defenses against
traffic fingerprinting attacks. The key idea behind all such
defenses is to obfuscate statistical properties of traffic flows
by adding dummy packets and/or delaying packets before
encryption.

i) Defenses against website fingerprinting: BuFLO [7],
one of the very first defenses against website fingerprinting
enforces fixed packet lengths and fixed inter packet intervals
and provides high privacy but incurs significantly high data
and timing overhead. CS-BuFLO [24] and Tamaraw [25] are
two extensions of BuFLO. In Walkie-Talkie [8], the browser
communicates with servers in half duplex mode and adds
dummy packets and delays to create confusions between
traces. Nonetheless, it still has high overhead and requires
significant changes to the existing infrastructure. In contrast,
WTF-PAD [10] uses adaptive padding and incurs zero timing
overhead and relatively low data overhead. Nonetheless, later it
was shown to be ineffective against deep learning based clas-
sifiers [3]. The current state-of-the-art defense FRONT [11]
focuses on obfuscating trace fronts by using a Rayleigh
distribution to determine the timing for dummy packets and
provides acceptable privacy with much less data overhead
compared to previous defenses. More recent papers defended
Tor traffic in real-time by leveraging universal adversarial
perturbations [26] and input agnostic adversarial patches [27]
to pre-compute dummy packet sequences, incurring relatively
low data overhead compared to earlier defenses.

ii) Defenses against video streaming fingerprinting: Zhang
et al. [9] explored how ideas from differential privacy could be
used to defend against video streaming fingerprinting attacks.
The authors used two ε-differentially private mechanisms,
Fourier Perturbation Algorithm (FPA) and d*-private mecha-
nism to add dummy packets to streaming traffic. While the
defense based on the FPA algorithm significantly reduced
attacker’s accuracy, it requires the entire trace to be known
in advance. On the other hand, d*-private defense incurs sig-
nificantly high overhead despite providing reasonable privacy.

C. GANs in traffic classification and defenses

With respect to traffic classification attacks, GANs can be
especially helpful when there is a lack of training data. For
example, GANDalf [15] used GANs to generate synthesized
training data for website fingerprinting such that classifier
training can be done with as few as 20 real samples per
class (total of 100 classes) and still achieve 87% accuracy,
surpassing Triplet Fingerprinting [28] which used N-shot
learning for the same problem. Similarly, GANs have also
been used to improve the performance of intrusion detection
systems [29], [30] and malware detection systems [31], [32]
by augmenting the training sets with adversarial samples.

GANs have also been used to defend against traffic fin-
gerprinting by using them to generate adversarial samples.
Unlike most defenses that leveraged adversarial samples us-
ing gradient based and optimization based methods, only
a few such as [33] and [34] that defend against website
fingerprinting and [16] and [35] that defend against malware
detection systems and intrusion detection systems, respectively
used GANs. In contrast, our work is focused on defending
streaming video traffic, rather than web traffic, using GANs.

III. BACKGROUND AND SOLUTION OVERVIEW

A. Generative Adversarial Networks (GANs)

While some of the fundamental ideas of GANs were there
for some time, the first key paper in GANs was the work of
Goodfellow et al. [36]. The authors simultaneously trained two
neural networks; a generator model (G) that captures the dis-
tribution of the input data and a discriminator model (D) that
can determine whether a given sample is real or synthesized
by G. During training, the minimax GAN loss encourages
G to generate samples that D cannot distinguish as coming
from original input data or from G while at the same time,
encouraging D to correctly distinguish samples generated by
G. Currently, GANs are mainly used in computer vision, such
as in image synthesis, super resolution, and de-noising. Only
very recently did papers start emerging in using GANs in other
domains such as time series data generation [37].

Multiple subsequent papers proposed changes to the base
GAN to address some of its limitations. Radford et al. [38]
proposed Deep Convolutional Generative Adversarial Network
(DCGAN) which uses deep CNN architectures for both G and
D and found that it avoids the mode collapse problem (i.e., G
producing the same or a small set of outputs without diversity).



The Wasserstein Generative Adversarial Network (WGAN)
extends regular GANs by altering the training procedure so
that D is updated many more times than G for each iteration.
Furthermore, D was updated to output a real-value (linear
activation) instead of a binary prediction with a sigmoid
activation while both G and D were trained using Wasserstein
loss which is the average of the product of real and predicted
values from D in order to provide linear gradients that are
useful for updating the model. By using the Wasserstein
Distance in the loss function, WGANs provide more stability
during training, while avoiding mode collapse.

Conditional Generative Adversarial Networks (CGAN), an-
other variant of GANs, use additional information other than
just the input noise vector to generate new data. One possible
additional information is class labels that can be used to
condition G and D to generate samples of a specific class,
unlike other GAN variants where the class of the sample
generated cannot be predicted in advance.

B. Threat Model and Solution

Our threat model assumes an attacker who tries to predict
the exact video streamed by a target user based on passively
observed encrypted traffic only as illustrated in Fig. 1-(a).
First, the attacker collects data of themselves playing target
videos multiple times and uses them to train a classifier model.
Next, the attacker uses the trained model on network traffic of
a target user to predict the streamed video. Such attacks have
been demonstrated in [4] and [22]. While the attacker can
use any machine learning model as the classifier, for clarity
we assume the attacker is using a CNN as the classifier. In
the Appendix, we show that our proposed defense is equally
effective against other classifier models, such as Long Short
Term Memory (LSTM) networks, AdaBoost, and MLPs.

In this paper, we propose a defense against such attacks
where our key idea is to use a GAN synthesized trace to hide
the original trace from the attacker as illustrated in Fig. 1-
(b). The SMAUG algorithm takes the trace that needs to
be defended and a GAN synthesized trace from a different
class as inputs and morphs the original trace to look like
the synthesized trace, ensuring that no data is lost and the
receiver can still recover the original message, and without
adding significant delays or overhead to the traffic flow.

We assess four GAN archetypes for traffic synthesis:
the original GAN [36], DCGAN [38], WGAN [39], and
CGAN [17]. As we show later, CGAN outperforms the others
and thus we use CGANs for the SMAUG algorithm.

C. Datasets

Finally, we need encrypted video streaming traffic datasets
to assess the performance of our defense. To this end, we use
two publicly available datasets as described below.

i) Deep Content dataset (DC) [22] comprises of traffic traces
for the first three minutes of 10 YouTube videos collected
at the data-link layer (WiFi). Each video has 320 traces
corresponding to different replays. For each trace, the three
minute interval is binned into 500 time slots (0.36s each) and
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Fig. 1: Threat model and defense in operation

each time slot is represented by summary statistics of packets
observed during that time. Out of the 24 features given in the
original dataset, we use the features Number of bytes in uplink
and Number of bytes in downlink in our experiments.

ii) SETA: Scalable Encrypted Traffic Analytics dataset [40]
comprises of traffic traces containing the first 64 bytes of
each outgoing and incoming packet sequences for 20 selected
Netflix videos. It contains 100 traces per video in the same
binned format as the DC dataset.

Since we use two features corresponding to uplink and
downlink for each dataset, we effectively ended up with 4
datasets: DC Up, DC Down, SETA Up, and SETA Down. In
Fig. 2 we visualize a sample trace and the mean trace for
each dataset. Note that the DC dataset on average is more
“active” than SETA (i.e. the blue curve in Fig. 2 goes to zero
more frequently for the SETA dataset while it is rare in the
DC dataset). Due to this, DC dataset has more frequent peaks
which are also larger in magnitude than those in SETA. This
is an observation we will be drawing upon later to aid with
the explanation of some results.

IV. GANS FOR TRAFFIC SYNTHESIS

We first investigate which GAN architecture is the most
suitable for synthesizing network traffic. Previous papers in



(a) Mean and sample traces from the SETA Down dataset

(b) Mean and sample traces from the DC Down dataset

Fig. 2: Mean and sample traces from DC and SETA datasets

network traffic synthesis [41], [42] rarely used any evaluation
metrics directly for their GANs. Instead, performance was
measured through methods specific to the experiment, such
as the percentage of fake packets that generated a successful
web response [41], and, when a performance metric specific
for the GAN was utilized, it was only a variation of the
GAN Quality Index (i.e., Train-on-Synthetic data and Test-on-
Real data) [42]. In contrast, we leverage GAN performance
metrics such as Inception Score [43] and Fréchet Inception
Distance [44] in addition to the GAN Quality Index [45]. To
the best of our knowledge, our paper is the first to conduct
a methodical and rigorous approach to measure the GAN
performance for network traffic synthesis. We next describe
the GAN performance metrics we used.

A. GAN Performance Metrics

i) Inception Score (IS) - The Inception Score (IS) [43]
as defined in (1) is a metric proposed in response to the
demand for an objective GAN performance metric. It measures
two key characteristics of GAN-synthesized samples; classifier
confidence and the diversity of synthesized samples.

IS(G) = exp(ExDKL(p(y|x)||p(y))) (1)

1) Classifier confidence - p(y|x) in (1) defines the proba-
bility that a sample belongs to a given class (i.e. the
“quality” of the sample). This can be calculated by
using a state-of-the-art classifier to make predictions
on synthesized data. For instance, in [43] the authors
used the then state-of-the-art Inception v3 model to
classify synthesized samples and recorded the prediction
probabilities as p(y|x). In our case, instead of Inception
v3 we use the custom CNNs used for video traffic
fingerprinting proposed in [22], [40].

2) Diversity - p(y) in (1) defines the diversity of the
synthesized samples. A GAN that produces samples only
from a single class will have a lower diversity, whereas a

GAN producing similar number of samples from all the
classes in the training data will have a higher diversity.

Finally, the expected KL divergence is calculated over these
two metrics to obtain the final score, which ranges from 1.0
(lowest) to n, where n is the number of classes in the dataset.

ii) Fréchet Inception Distance (FID) - The Fréchet Inception
Distance defined in (2), was proposed by Heusel et al. [44] as
an improvement to the Inception Score.

FID = ||µ− µg||2 + tr(Σ + Σg − 2(ΣΣg)1/2) (2)

where tr(A) is the trace of matrix A.
Unlike IS, FID compares the statistical properties of syn-

thesized samples to those of the real data distribution by
measuring the following two properties.

• The squared sum of the difference between the mean
values of real and generated features calculated over all
the features.

• The square root of the dot product between the co-
variance matrices for the features of the real and syn-
thesized data samples. This factor compares the original
feature distribution to the synthesised one - it can be
thought of as a measurement testing the extent to which
the GAN is experiencing mode collapse.

Here, a lower FID indicates a better GAN performance.

iii) GAN Quality Index (GQI) - The idea behind GAN
Quality Index [45] is that if the “quality” of the samples (as per
some arbitrary definition of quality as observed by a classifier
such as a CNN) generated by the GAN is high, and there
are enough samples being generated from each class, then
the classifier trained on the synthesized samples should be
able to perform well when tasked with classifying real data.
Accordingly, the GQI is calculated as follows.

GQI =
ACC(CSg

)

ACC(CSr
)
∗ 100 (3)

where ACC(CSg
) is the accuracy of a classifier trained on

a synthesized set of samples Sg and tested on a real set of
samples Sr, and ACC(CSr

) is the accuracy of a classifier
trained and tested on subsets of Sr. The closer the GQI is
to 100, the more comparable the performance of a classifier
trained on synthetic data is to that of a classifier trained on
real data and thus, the GAN can be considered as having a
better performance.

B. Performance of Various GANs in Traffic Synthesis

We trained the GAN types mentioned in Section III-B
using all available samples from each dataset. Afterwards, we
generated the same number of traces for each dataset as was
used during training, both for the purpose of simplifying the
calculation of the FID score, as well as for fairness in terms of
the GQI score, as the original CNN (whose accuracy comprises
the ACC(Csr ) part of GQI) have been trained on 2,000 and
3,200 samples respectively.

In Fig. 3-(a), (b), and (c) we show the three GAN perfor-
mance metrics for each GAN variant, grouped by the dataset.



(a) Inception Score (b) Fréchet Inception Distance (c) GAN Quality Index

Fig. 3: Inception, FID and GQI Scores grouped by dataset.

(a) Original distribution (b) GAN synthesized distribution (c) DCGAN synthesized distribution

Fig. 4: Means and standard deviations of the original, GAN, and DCGAN sample distributions.

Results show that the base GAN performs worse compared to
other models across all datasets and metrics. We note that as
mentioned in Section IV-A, a lower value for IS and GQI or
a higher value for FID indicates a poor performance. Other
GAN types have approximately same performances across all
metrics and datasets.

The poor performance of base GANs can be attributed
to its susceptibility to mode collapse. Mode collapse is a
phenomenon observed in GANs wherein the Generator fails to
produce a diverse range of outputs, rather creating outputs that
are very similar or even identical to one another. In most cases,
this is due to the Generator being able to fool the Discriminator
by perfecting the look of a single sample, thus “winning” the
game at the cost of diversity. In other scenarios, the Discrimi-
nator might get so adept at discerning the synthesized samples
provided by the GAN from real ones, that the Generator is
no longer able to receive any meaningful feedback from the
Discriminator and as a result cannot improve. This problem is
common with the base GAN in image generation, and is one
of the things that architectures such as the DCGAN and the
WGAN have attempted to resolve [38], [39].

In Fig. 4, we show example evidence of mode collapse
of base GANs. The figure shows the box plots of the first
50 bins of 2,000 samples each from the SETA UP dataset,
synthesized from the base GAN, and synthesized from a
DCGAN, respectively. From Fig. 4-(b) it is clear that the GAN
is generating traces that look almost identical to each other, as
evidenced by the almost non-existent inter-quartile range for

the vast majority of the 50 bins. In contrast, the DCGAN (i.e.,
Fig. 4-(c)) have significant inter-quartile ranges similar to the
real data (i.e., Fig. 4-(a)), indicating synthesized samples are
sufficiently different from each other.

C. Selecting a GAN type for SMAUG

Though other GAN types show better performance than the
base GAN in Fig. 3, they are not without their own issues. For
example, we used the DCGAN and the WGAN to synthesize
1,000 samples each from the SETA Up dataset, and conducted
following two experiments:

1) We trained a CNN on the synthesized samples and used
it to classify our real dataset. In this case, we noticed that
the CNN achieved a satisfactory accuracy (as reflected
by the GQI score in Fig. 3). Nonetheless, the confusion
matrix revealed that one of the classes, class 8, was
misclassified almost all the time.

2) We trained a CNN on real data and had it classify 10,000
synthesized samples. Here, we noticed that both DC-
GAN and WGAN synthesized significantly less number
of samples from class 8 as seen in Fig. 5, where only a
small fraction of classified samples belong to class 8.

A closer look at the dataset revealed that class 8 is too sta-
tistically dissimilar to the rest of the classes, to the point where
the Generators could not learn a representation of it that would
trick the Discriminator, resulted in the abandonment of class
8 altogether. We observed the same with both the DCGAN
and WGAN. Between DCGAN and WGAN, while they have



Fig. 5: DCGAN synthesized samples class distribution.

comparable performances, WGAN takes a significantly longer
time to train. As a result, we decided against using WGAN.

Referring to back Fig. 3, we observe that the CGAN comes
out on top in terms of performance more frequently than
others, and in some cases such as the GQI graph for SETA Up,
show significantly higher performance. Moreover, the CGAN
trivially does not face the class distribution problems observed
in other models as the class that the CGAN produces a sample
of is determined by the target class input that is fed into it.
Hence, for the design of SMAUG defense, we used CGANs.

V. PROPOSED DEFENCE & RESULTS

As mentioned in Section III-B, our end goal is to build a
defense strategy to provide privacy in video streaming under
the attack model described in Section III-B.

There are a few design goals to consider when designing a
defense against traffic fingerprinting. First, when the defense
is applied on real traffic it must significantly drop the accuracy
of the attacker classifier. This must be true even if the attacker
trains a new model by collecting large volumes of newly
defended traffic. Second, is the trade-offs between overhead
and delay, and the level of privacy provided by the defense.
For example, a naive defense of making all the packets the
same size will consume unnecessarily large bandwidth despite
providing perfect privacy. Equally, the defense must not delay
packets too much because that will adversely affect the end
user’s quality of experience.Having these design goals in mind,
we propose SMAUG - Streaming Media Augmentation Using
CGANs to defend streaming traffic based on three key ideas.

1) CGAN synthesized target traffic template - We utilize
a CGAN to generate a “target” video traffic trace, that
is then used by the defense algorithm to gauge which
packets to delay and which packets to pad.

2) Aligning activity peaks - We delay bursts of activity
from the original trace (within a certain limit) so that
they coincide with activity in the target trace. Any
remaining peak in the target trace, we add them to the
resulting defended trace as “dummy” peaks.

3) Adding random noise - Optionally, noise can be
added to target traces. This allows the algorithm to more
effectively hide remnants of the original trace.

A. SMAUG

We present the detailed algorithm in Algorithm 1. Given a
trace To with label Lo that we would like to defend, we first

generate a target trace Tt using the CGAN with label Lt such
that Lo 6= Lt. Optionally, the algorithm iterates through Tt
and add some random noise between 0 and z to each of Tt’s
bins. Next, the algorithm redistributes the contents of the bins
of To, moving in chronological order and only looking b bins
ahead so as to make To resemble Tt, resulting in the defended
trace Tr.

One of the core steps of the algorithm involves “aligning”
the peaks of To with those of Tt (i.e., lines 7-19). This is
an iterative process in which the contents of the bins of To
are delayed in such a way that their destination time slots
correspond to time slots in Tt that also have some level of
activity as follows.

1) In a situation where a peak of To is smaller in size
than a corresponding peak in Tt, we pad the bins of
To up to the level of Tt. Fig. 6-(a) illustrates this idea.
The original trace peak, in blue, is delayed in order to
be hidden behind the target trace peak, in orange (the
maximum allowed delay is b bins).

2) If the peak in To is greater in size, the parameter m
comes into play. m is the maximum percentage by which
a peak in Tt may be expanded in order to accommodate
a peak from To. Several trials helped us conclude that a
value of m that worked well was 0.1, and this was kept
static across all datasets and experiments. If there is still
leftover traffic in the To peak after this peak expansion,
the remaining traffic is left undefended and unmoved.
An extreme case of this, where Tt contains no peaks
whatsoever, is illustrated in Fig. 6-(b). Here, the peak is
left untouched and thus undefended.

After this process there will still be some peaks in Tt that
are left unused. Those peaks are still added to Tr as “dummy
peaks”, to mislead the attacker as illustrated in Fig. 6-(c).

In contrast to previous papers [46], SMAUG does not
assume knowledge of the entire trace that needs to be de-
fended in advance, since this is not practical in real-world
implementations. Instead, we assume that we only know b
bins in advance, and follow a greedy approach for delaying
and padding our packets. This approach is more practical and
suits well for defending video streaming traffic. Finally, we
highlight that SMAUG runs in O(n) time, where n is the
length of a trace and as such is efficient. The hyper-parameters
of the algorithm, b and m were selected empirically.

B. Evaluation of SMAUG’s Effectiveness

We evaluate the effectiveness of SMAUG in defending video
streaming traffic under two attack scenarios.

1) A scenario in which the attacker is unaware of the
defense being employed, and as such continues using
their current CNN to classify user traffic.

2) A scenario where the attacker realizes that the traffic
is being protected, and accordingly builds a new CNN-
based classifier as an attempted counter-measure.

In scenario 1, we found that the attacker always achieved
no better than a random-guess accuracy on defended data. For
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Algorithm 1 SMAUG

Require: b ≥ 1, To, Tt,m, z .
b is the max delay, To and Tt are the original and target
traces, m is the max allowed peak magnitude increase, z
is the optional noise parameter.

1: Tri ← 0, i = 0, ..., n
2: for i← 0 to n do . Optional step: add noise to target
3: Tt[i]← Tt[i] + random float between 0 and z

4: for i← 0 to n do
5: C ← max(To[i]− Tt[i] + Tr[i], 0)
6: Tr[i]← Tr[i] + To[i]− C
7: if i+ b+ 1 ≥ (n) then . End of trace approaching
8: b← b− 1

9: if C > 0 then
10: if i+ 1 < n then
11: targ slice← Tt[i+ 1 : i+ 1 + b]
12: res slice← Tr[i+ 1 : i+ 1 + b]
13: avail ← [max(m ∗ x + x − y, 0) for (x, y) in

zip(targ slice, res slice)]
14: avail total←sum(avail)
15: dump←max(C − avail total, 0)
16: Tr[i]← Tr[i] + dump
17: for j ← 0 to b do
18: if C ≤ 0 then
19: break
20: Tr[i+ j]← Tr[i+ j]+ min(avail[j], C)
21: C ← C− min(avail[j], C)

22: else
23: Tr[i]← Tr[i] + C . Ran out of trace
24: Tr[i]← max(Tr[i], Tt[i])

example, the accuracy against defended SETA Up traces was
∼5%–6%. The rest of the accuracies were similar. Therefore,
for the rest of the paper we consider only scenario 2.

Additionally, when constructing the defended training
dataset for the attacker, we defended each trace 10 times
separately, resulting in a dataset of 20,000 samples for SETA
and 32,000 for DC. This was done to impose the maximum
possible disadvantage on the defender, by making the assump-
tion that the attacker will collect and train their model on a
significant volume of defended data. We used 90% of data for
training and the rest of 10% of data for testing and we report
the attacker’s accuracy on the test set as the metric to measure
the effectiveness of the defense.

TABLE I: Performance of real and synthetic targets.

Dataset Undef. Real Real + Noise Synth. Synth. + Noise
SETA Up 98.0% 72.9% 70.9% 67.0% 55.4%
SETA Down 94.3% 50.3% 42.9% 37.1% 29.6%
DC Up 97.7% 74.2% 43.3% 67.8% 45.5%
DC Down 96.5% 74.5% 48.1% 71.9% 48.4%

1) Real vs. CGAN Generated Target Traces: SMAUG can
take both CGAN-synthesized and real traces as targets, and
can attempt to make the original trace resemble the target to
the best of its ability. As such, we check whether using CGAN
indeed affect the attacker accuracy. We consider both cases of
with and without the optional noise addition steps. We show
the results in Table I.

The results in Table I show that our algorithm is effective
in thwarting attacker’s attempts to compromise user privacy,
whether the defense utilizes real or synthesized targets. Results
further show that, when traces were protected using our
algorithm with synthesized targets, the attacker’s new model
did worse than when real targets were used.

Further investigations showed that CGAN synthesized traces
were generally around 20% larger in size than real traces.
We believe that this is the key to explaining why synthesized
traces help more in the defense process than real traces. We
found that CGAN-generated traces have more peaks of activity
and noise in general, which the algorithm can use to more
effectively hide the original trace.

Finally, using CGANs to generate target traffic compared
to real traces also have the extra advantage of the possibility
of generating as many samples as required. If real traces are
used, after some replays the defense algorithm has to repeat
using traces that have been used in the past, which may assist
the attacker. With CGANs, the defender can draw as many
samples as required without two samples being identical.

2) SMAUG vs. SOTA: Next, we compare the performance
of SMAUG with two state-of-the-art defenses; the d*-private
mechanism and the Fourier Perturbation Algorithm (FPA)
method, both of which were proposed by Zhang et al. [47] with
the intention of enforcing differential privacy on streaming
traffic. As a standard baseline we also assess the Kernel
Density Estimation (KDE) for target generation than CGANs.

d*-private mechanism calculates a noise value to be added
per each packet in real time using an algorithm proposed by
Xiao et al. [48]. This results in the trace becoming “noisy”
and hence a very high overhead in the vast majority of cases.
The FPA method based on the paper by Rastogi et al. [46]



TABLE II: Comparison of various defence mechanisms.

Dataset Defence Accuracy Delay (bins) Overhead

SETA Up

Undefended 98.0% 0 0%
CGAN 67.0% 2.64 36%
CGAN + Noise 55.4% 2.29 66%
KDE 85.5% 2.28 45%
KDE + Noise 79.4% 2.04 65%
FPA 8.7% Full trace 61%
d* 36.7% 0 960%

SETA Down

Undefended 94.3% 0 0%
CGAN 37.1% 4.92 17%
CGAN + Noise 29.6% 3.23 56%
KDE 59.9% 4.73 47%
KDE + Noise 46.5% 4.19 60%
FPA 7.2% Full trace 20%
d* 42.3% 0 395%

DC Up

Undefended 97.7% 0 0%
CGAN 67.8% 12.9 23%
CGAN + Noise 45.5% 11.8 58%
KDE 89.8% 9.0 29%
KDE + Noise 48.7% 8.2 61%
FPA 21.3% Full trace 32%
d* 94.1% 0 279%

DC Down

Undefended 96.5% 0 0%
CGAN 71.9% 9.5 14%
CGAN + Noise 48.4% 8.7 56%
KDE 91.5% 8.2 21%
KDE + Noise 75.4% 7.9 63%
FPA 26.7% Full trace 36%
d* 91.4% 0 234%

observes the entire packet sequence and then converts it to
the frequency domain and retaining only the first k fourier
coefficients, adds Laplacian noise to each coefficient before
converting it back to the time domain. Finally, KDE is simply
a method of estimating the probability density function of a
given distribution.

We report the results in Table II. In addition to the attacker
accuracy, we also report delay and overhead. Delay is the
median number of bins that each bin gets delayed by as a result
of a given defense mechanism. Overhead for this experiment
is calculated by taking the difference between the sum of all of
the defended bin sizes and the undefended bin sizes, divided
by the sum of all undefended bin sizes. For overhead costs
across experiments, the number we report is also the median.
Note that when deciding the level of noise to add in the noised
entries, we tried to add as much noise as necessary to reach
an arbitrary overhead between 55-65%, and accuracies within
this overhead are what we report in the table.

According to the results, FPA appears to be the best
algorithm consistently giving the lowest accuracy for all the
datasets. Nonetheless, FPA’s assumption of knowing the entire
trace in advance, limits its ability to deploy in real-world
settings. KDE on the other hand performs worst. It has
highest accuracy for all four datasets. Though KDE targets
has comparable delays as CGAN targets, it has slightly higher
overhead. This can be attributed to KDE not being as proficient
as the CGAN in learning the distribution of the dataset. Finally,
despite d* algorithm producing lowest accuracy in SETA Up
dataset, it has significantly higher overhead in all the datasets.
We show the effect of SMAUG, the d* algorithm and the FPA

(a) Original trace from SETA Up (b) Trace defended using SMAUG

(c) Trace defended using FPA (d) Trace defended using d*

Fig. 7: Example defended traces.

(a) SETA Down (b) DC Down

Fig. 8: Effect of attacker accumulating defended samples.

method on the original traces in Fig. 7. The figure shows that
FPA distorts the signal significantly while d* method adds a
significant amount of overhead (Note that the y-axis scale is
different in the FPA graph). Overall, CGAN targets provide a
better trade off between defenses, delays, and overhead com-
pared to all the other alternatives we investigated. Moreover,
the optional addition of noise further improves the defense in
all cases.

3) Longer observation periods: Our previous results were
generated assuming the attacker has access to 20,000 and
32,000 defended samples from SETA and DC datasets re-
spectively. Next, we assess how the attacker’s accuracy may
increase as they get access to more defended data. We pro-
gressively create a larger training dataset by defending a single
trace multiple times. For example, for the SETA Down dataset,
we first defend all of the 2,000 examples from the dataset
using CGAN targets and train a new attacker model. Next
we progressively increase the training set size defending each
training sample multiple times, thus creating new training
samples. When we defend the entire dataset once, we refer
to that as a “1” multiplier. When we defend it twice (for
example, resulting in 2,000 * 2 = 4,000 training samples for



SETA Down), we refer to that as a “2” multiplier, and so on.
We show the results in Fig. 8.

Results show that the attacker’s accuracy indeed goes up
when they observe more and more training samples. However,
that plateaus out at 50% and the attacker can not achieve more
than that even if they keep collecting defended traffic. The
initial increase in accuracy is likely due to the fact that the ex-
amples generated by the CGAN are not entirely independent of
each other - a property necessary to achieve true randomness.
Nonetheless, despite this phenomenon our defense algorithm
was still able to sufficiently obstruct the original trace from
the attacker so as to make reliable classification not possible
with the current attacker architecture.

VI. DISCUSSION

In this section, we discuss the practical aspects, limitations
and possible future improvements of our work.

Practical aspects - Our results show that SMAUG has less
overhead and delay compared to state-of-the-art methods.
Unlike other prior papers (e.g. FPA) SMAUG does not need
to observe the entire trace in advance, rather requires the
knowledge of next b bins. As a result, it is better suited to
be deployed over DASH. Future work could explore how to
further minimize this delay, for instance whether it is possible
to predict the values of next b bins with reasonable accuracy
to ensure near real-time defense.

Next, in our experiments, we show the effectiveness of
SMAUG in separately defending both uplink and downlink
traffic, yet did not explain how the solution can be practically
deployed. In practice streaming server will have access to
traffic patterns of its closed video catalog (e.g, Netflix) and
is in a position to train the CGAN. As such, at the start of
a new client session the server can generate a new CGAN
sample and initiate a defense for the downlink.

Defending uplink requires some extra steps. Once the
CGAN is trained the server can share it with the client.
This can be done apriori and can be periodically updated to
highlight the changes in the catalog. However, our design does
not require the CGAN to cover the entire video catalog of
the server - what is required is CGAN’s ability to generate a
diverse range of target traces. When the client wants to stream
a new video, during the handshaking process the server can
indicate which class label to give as the input to the CGAN
and the client can generate a target pattern for uplink at their
end. The rest of the process will be same as defending the
downlink.

GAN Training - Overfitting the CGAN generating target
traces on the training set may cause the generated traces to be
exactly similar to training set samples of the target class. This
might undermine the use of the CGAN for target generation
as opposed to picking a real trace from the training set. While
the target trace needs to be close to the behavior of the
target class, including a certain amount of noise in the target
trace will help the defending process while reducing attacker
accuracy. Thus, future work need to explore methods for

early stopping of CGAN training, striking a suitable balance
between the similarity between actual and generated samples
and the amount of noise in the generated sample.

Further efficient defenses - Other approaches that can further
reduce attacker accuracy with reasonable overhead needs to
be explored. For instance, future work can explore how
approaches such as universal adversarial perturbations [49] and
master faces [50] can be used in relation to network traffic
to pre-compute perturbations that can be added to streaming
traffic with minimum delays.

VII. CONCLUSION

In this paper, we introduced SMAUG, a novel defense
mechanism to defend video streaming traffic against traffic
fingerprinting using GANs. In order to construct our defense
mechanism, we conducted the first comprehensive perfor-
mance evaluation of different types of GANs in the context
of network traffic synthesizing using state-of-the-art metrics
from the machine learning community. We demonstrated that
Conditional GANs (CGANs) outperform any other GANs
when it comes to traffic synthesis.

We then presented our defense framework SMAUG, lever-
aging CGANs, and evaluated its performance against an at-
tacker unaware and aware of the defense. We also compared
SMAUG against comparable state-of-the-art defenses. Overall,
we demonstrated that our solution provides better privacy as
well as better delays and overhead compared to all the other
alternatives we investigated.
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VIII. APPENDIX

Table III shows the performance of LSTM, AdaBoost, and
MLP on defended traces. As with the other experiments,
the original dataset has been defended 10 times before these
models were trained and tested on it. We see that the MLP
performs surprisingly well on traces defended without using
the optional noise step. However adding noise brings the
MLP’s accuracy in line with the earlier CNN results. Overall,
the results show that SMAUG is generalizable and is able to
reliably thwart model architectures other than CNNs.

TABLE III: SMAUG’s effectiveness on other classifiers.

Dataset Target AdaBoost MLP LSTM

SETA Up
Undefended 83.0% 87.5% 83.1%
CGAN 21.6% 61.1% 5.5%
CGAN + Noise 18.4% 57.2% 5.0%

SETA Down
Undefended 61.2% 79.5% 56.5%
CGAN 12.7% 59.4% 22.9%
CGAN + Noise 5.0% 30.4% 7.3%

DC Up
Undefended 95.5% 97.0% 94.7%
CGAN 41.7% 69.3% 56.3%
CGAN Noise 20.8% 45.3% 45.1%

DC Down
Undefended 96.9% 94.5% 88.5%
CGAN 35.7% 71.5% 64.9%
CGAN + Noise 23.3% 46.6% 46.4%


